organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Nimonol and 6-oxonimonol

V. Kabaleeswaran,^a R. Malathi,^a S. S. Rajan,^a* G. Suresh^b and N. S. Narashiman^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bCentre for Agrochemical Research, SPIC, Science Foundation, Chennai 600 032, India, and ^cNational Laboratory, Pune, India Correspondence e-mail: crystal@giasmd01.vsnl.net.in

Received 17 March 1999 Accepted 9 September 1999

The crystal structures of two intact limonoids, nimonol, 7α -acetyl- 17α -(3-furyl)- 6α -hydroxy- 4α , 4β , 8β -trimethyl- 5α , 18α -androsta-1,14-dien-3-one (C₂₈H₃₆O₅), and 6-oxonimonol, 7α -acetyl- 17α -(3-furyl)- 4α , 4β , 8β -trimethyl- 5α , 18α -androsta-1,14-diene-3,6-dione (C₂₈H₃₄O₅), are reported. The molecular features are mostly the same in the two structures; however the orientations of the acetoxy group are different in the two structures. The packing in nimonol is due to O-H···O hydrogen bonds while in 6-oxonimonol it is due to C-H···O hydrogen bonds.

Comment

Neem leaves and neem oil have been used as ecofriendly insecticides in India for a long time and the constituents of neem like azadirachtins and a few other bioactive constituents have been studied for their biological activity (Govindachari, Narashiman *et al.*, 1996). Recently the X-ray structures of a few azadirachtins and a few other compounds have been reported (Bilton *et al.*, 1987; Kabaleeswaran *et al.*, 1994; Govindachari, Geetha Gopalakrishnan *et al.*, 1996). Nimonol, one of the limonoids, isolated from the leaves of neem (Suresh *et al.*, 1997) exhibits antifeedant and ecdysis activity similar but to a lesser extent than the azadirachtins. The stereo-chemistry was clearly established by NMR techniques (Suresh *et al.*, 1997). 6-Oxonimonol is a derivative of nimonol and was

prepared to study the change of activity with the native compound. This paper reports the crystal structures of both nimonol, (I), and 6-oxonimonol, (II). However the absolute structure was not established by X-ray techniques.

The conformations of the *B*, *C* and *D* rings are chair, sofa and envelope, respectively, in both structures (Duax *et al.*, 1975). However the ring *A* exists as a half-chair in nimonol and as a sofa in 6-oxonimonol. Consequently the torsion angles C1-C2-C3-O1, C2-C3-C4-C28 and C2-C3-C4-C29 are different in two structures. The furan ring *E* is pseudoaxially subsituted in both the structures with respect to the ring *D*. The orientation of the acetoxy group at C7, defined by the torsion angle C6-C7-O3-C26 is 109.1 (3)° (anticlinal) in nimonol and 70.4 (3)° (synclinal) in 6-oxonimonol. However, the orientations of the methyl C atoms are close to one another. The ring pairs A/B and B/C are trans fused and C/D is quasi-trans fused in the two structures. The structures of (I) and (II) are shown in Figs. 1 and 2, respectively.

The geometric data pertinent to defining the hydrogen bonding scheme in nimonol, (I) are given in Table 2. However in 6-oxonimonol the molecular packing is due to $C-H \cdots O$ hydrogen bonds.

Experimental

Crystals of nimonol (I) and 6-oxonimonol (II) were prepared from the methanol by slow evaporation.

 $D_x = 1.195 \text{ Mg m}^{-3}$

Cell parameters from 20

Cu $K\alpha$ radiation

reflections

 $\mu = 0.646 \text{ mm}^{-1}$

Needle, colourless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

T = 293 (2) K

 $\theta_{\rm max}=71.97^\circ$

 $h=0\rightarrow 12$ $k = 0 \rightarrow 13$

 $l = -15 \rightarrow 13$

3 standard reflections

every 100 reflections

intensity decay: 3%

 $\theta = 14-35^{\circ}$

Compound (I)

Crystal data

C28H36O5 $M_r = 452.57$ Monoclinic, P2 a = 10.087 (3) Åb = 11.044 (3) Å c = 12.342(3) Å $\beta = 113.86 \ (2)^{\circ}$ V = 1257.3 (6) Å³ Z = 2

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3002 measured reflections 2612 independent reflections 2443 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.038$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1295P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.062$	+ 0.1402P
$wR(F^2) = 0.194$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.153	$(\Delta/\sigma)_{\rm max} = 0.001$
2612 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
298 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	(Sheldrick, 1997)
refinement	Extinction coefficient: 0.0022 (14)

Selected geometric parameters (Å $^{\circ}$) for (I)

II)

Crystal data

$C_{28}H_{34}O_5$
$M_r = 450.55$
Orthorhombic, $P2_12_12_1$
a = 10.805 (1) Å
b = 12.710(2) Å
c = 17.538(2) Å
$V = 2408.5 (5) \text{ Å}^3$
Z = 4
$D_x = 1.243 \text{ Mg m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffract-

ometer $\omega/2\theta$ scans Absorption correction: none 2481 measured reflections 2481 independent reflections 2222 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ wR(F²) = 0.129 S = 0.8002481 reflections 298 parameters H-atom parameters constrained

 $\mu = 0.674 \text{ mm}^{-1}$ T = 293 (2) K Needle, colourless $0.30 \times 0.25 \times 0.15 \text{ mm}$ $\theta_{\rm max} = 67.92^{\circ}$ $h = 0 \rightarrow 12$ $k=0\to 15$ $l = 0 \rightarrow 21$ 3 standard reflections

every 100 reflections

intensity decay: 3%

Cu Ka radiation

reflections

 $\theta = 12 - 36^{\circ}$

Cell parameters from 25

 $w = 1/[\sigma^2(F_o^2) + (0.1007P)^2]$ + 1.2632P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001_{\circ}$ $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.0053 (5)

The H atoms were placed at calculated positions and refined as riding using SHELXL97 (Sheldrick, 1997).

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP

Table 2 Hydrogen-bonding geometry (Å, $^{\circ}$) for (I).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$O2-H2O\cdots O1^{i}$ $C1-H1\cdots O5^{ii}$	0.82 0.93	1.950 (6) 2.56 (6)	2.768 (6) 3.325 (7)	175 (4) 130 (4)	
$C23-H23\cdots O4^{iii}$	0.93	2.48 (8)	3.472 (9)	153 (5)	

Symmetry codes: (i) $-x, y - \frac{1}{2}, 1 - z$; (ii) $1 - x, \frac{1}{2} + y, -z$; (iii) x, y, z - 1.

			Table 3				
O1-C3	1.223 (5)	O4-C26	1.195 (6)	Selected geometric pa	arameters (Å,	$^{\circ}$) for (II).	
O2-C6	1.428 (4)	O5-C23	1.325 (10)				
O3-C26	1.344 (5)	O5-C21	1.350 (6)	O1-C3	1.220 (4)	O4-C26	1.170 (4)
O3-C7	1.445 (4)			O2-C6	1.208 (3)	O5-C23	1.345 (6)
			O3-C26	1.336 (3)	O5-C21	1.371 (5)	
				O3-C7	1.446 (3)		
C26-O3-C7	119.4 (3)	O3-C7-C6	106.5 (3)				
C23-O5-C21	105.5 (5)	C8-C7-C6	113.6 (3)				
O1-C3-C2	118.9 (4)	O4-C26-O3	124.7 (4)	C26-O3-C7	119.1 (2)	O3-C7-C8	105.9 (2)
O1-C3-C4	121.2 (4)	O4-C26-C27	126.1 (4)	C23-O5-C21	105.8 (3)	C20-C21-O5	111.5 (4)
O2-C6-C5	110.9 (3)	O3-C26-C27	109.2 (4)	O1-C3-C2	119.5 (3)	O4-C26-O3	121.9 (4)
O2-C6-C7	106.7 (3)	C20-C21-O5	112.9 (5)	O1-C3-C4	121.3 (3)	O4-C26-C27	126.5 (3)
O3-C7-C8	107.6 (3)	O5-C23-C22	111.9 (5)	O3-C7-C6	111.6 (2)	O3-C26-C27	111.6 (3)
O1-C3-C4-C29	46.3 (6)	C26-O3-C7-C6	109.1 (3)	O1-C3-C4-C29	47.3 (4)	C26-O3-C7-C6	-70.4 (3)
O1-C3-C4-C28	-68.7(5)	O2-C6-C7-O3	-60.4(4)	O1-C3-C4-C28	-69.6(4)	O2-C6-C7-O3	132.3 (3)
C4-C5-C6-O2	-53.1 (4)			C4-C5-C6-O2	-23.8 (4)		. ,

organic compounds

(Frenz, 1984); program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1986); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

VK thanks CSIR, India, for a senior research fellowship and SSR thanks DST, India, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1476). Services for accessing these data are described at the back of the journal.

References

Bilton, J. N., Broughton, H. B., Jones, P. S., Ley, S. V., Lidert, Z., Morgan, E. D., Rzepa, H. S., Sheppard, R. N., Slawin, A. M. Z. & Williams, D. J. (1987). *Tetrahedron*, **43**, 2805–2816.

- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1975). In *Topics in Stereochemistry*, edited by E. L. Eliel & N. L. Allinger, Vol. 9. New York: Interscience.
- Enraf-Nonius (1989). *CAD*-4 *Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1984). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Govindachari, T. R., Geetha Gopalakrishnan, Rajan, S. S., Kabaleeswaran, V. & Lessinger, L. (1996). Acta Cryst. B52, 145–150.
- Govindachari, T. R., Narashiman, N. S., Suresh, G., Partho, P. D. & Geetha Gopalakrishnan (1996). J. Chem. Ecol. 22, 1453–1460.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kabaleeswaran, V., Rajan, S. S., Geetha Gopalakrishnan & Govindachari, T. R. (1994). *Curr. Sci.* 66, 362–364.
- Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Suresh, G., Narashiman, N. S. & Palani, R. (1997). Phytochemistry, 45, 807– 810.